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ABSTRACT 

For certain numerical experiments on the behavior of fluctuations in a plasma it is 
useful to be able to construct examples of random surfaces. These are functions of two 
variables which are members of ensembles which can be characterized only by statistical 
properties. We consider only homogeneous surfaces in which these statistical properties 
are independent of position. The problem we consider is this: given a correlation function 
and sets of random numbers, to operate on these sets so as to produce successively 
members of our ensemble of functions with the specified correlation function. Two 
possible methods of doing this are described and contrasted, one based on Fourier 
synthesis and the other on the thtory of optimum linear prediction. 

1. INTRODUCTION 

While the theory of random functions of one variable is well understood, random 
functions of two variables have received much less attention. Such functions can 
be described as random surfaces. From a survey of their properties [l], I find, as a 
rule of thumb, that only those properties which can be described in terms of the 
value of the function itself and its derivatives at a point are well understood. We 
are in almost complete ignorance of properties which cannot be described in this 
way and may be called nonlocal. For example, the statistical properties of contours 
of the surface are practically unknown. Such properties may be approached 
through Monte-Carlo-type calculations, whereby examples of random surfaces 
are set up and examined numerically. Such an approach may indeed be suggestive 
enough ultimately to generate approximate analytical solutions to these problems. 
In this report I describe and compare two methods for constructing numerical 
examples of random surfaces. This work was undertaken mainly to form the basis 
of a specific Monte-Carlo calculation of the scattering of microwave radiation by 
the turbulent plasma in the Zeta discharge. 

In Section 2, I delineate the problem more precisely, indicate the general method 
of its solution, and briefly discuss the method of Fourier synthesis. Section 3 
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contains a summary of the theory of optimum linear prediction and an application 
of it to the construction of examples of random functions of time, and in Section 4 
its extension to two dimensions and application to the construction of random 
surfaces is discussed. 

2. RANDOM SURFACES 

By analogy with the definition of a random process(see, for example,Bendat [2]), 
a random surface may be defined as a member of an ensemble of functions 
cm, YN, --00 < x < a, -co < y < co, which can be characterized only 
through its statistical properties. The index k separates different members of the 
ensemble. Averages over the ensemble are denoted by brackets ( ). We shall 
assume (&(x, y)) = 0 for all x and y. The principal statistical properties are the 
variance V, defined by 

v = <h2(x, YD 

and the correlation function defined by 

N& d = <f& Y> fk(X + 6, Y + 7)) 
V 

We shall consider only homogeneous surfaces for which V and R are independent 
of x and y. We shall further assume that the probability distribution of the surface 
is Gaussian in a generalized sense, so that the specification of V and R is sufficient 
to specify all higher order moments and correlation functions (S. F. Edwards, 
private communication). This corresponds to the experimental situation: we 
have information about the form of R but usually no independent information 
about higher order correlations. 

Finally we assume that the surface is isotropic, i.e. 

RCS 4 = R(P) where p = (t2 + q2)112. 

This restriction could be removed in principle. 
What we are after, then, is a method of generating a particularf& y). Both the 

methods to be described are basically operations applied to sets of random num- 
bers, chosen from a Gaussian distribution, to generate values of the function 
at a mesh of suitably spaced points in the (x, y) plane. Of course, if the points 
were spaced so far apart that the values were statistically independent, then the 
random numbers themselves would serve as values of the function, after a trivial 
normalization to give the correct value of the variance V. But in this case we 
should have lost the fine structure of the surface represented by the correlation 
function, and the aim of the present work is to keep in this structure and examine 
the effects of varying it. The spacing of the points, therefore, must certainly be 
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small compared with the integral scale L of the correlation function, which is 
defined by 

L = s; R(P) dp (1) 

and corresponds to the usual intuitive notion of the correlation length. 
More generally, we must note that physically occurring correlation functions 

contain (at least) two independent length scales, of which one is L and the other 
can be defined by the behavior of R near p = 0. Since R”(0) is a negative-definite 
quantity ([2], p. 21), R(p) must be of the form 

R(p) N 1 - p2/h2 + ... (2) 

for small p, where h may be called the gradient scale. We shall be interested in 
problems in which the effect of varying X is to be examined; so, clearly, the spacing 
of the points should be small compared with a typical value of h, and this, in 
turn, is usually smaller than L. 

Of course, only a finite portion of each surface can be generated. It will be ade- 
quate, however, if the linear dimensions of the sample are large compared with L. 

We shall calculate the values of the function at a square mesh of points 
xi , yi , i, j = l...N, with mesh spacing 6 and N points on a side. The above 
requirements amount to 

8<h<L<N6. (3) 

But evidently if “<’ is interpreted to imply an order-of-magnitude difference, 
then N m 10s, which would in turn require the generation of N2 = lo6 numbers. 
This is quite impracticable. The largest surface I have computed has N = 25, and 
this takes about 2-minutes’ computing time. It may be shown that to satisfy (3) 
strictly would require of the order of lo5 times as long. Accordingly, half an 
order-of-magnitude difference is the most that can be obtained; the following set 
of values is typical: 

8 = 1, x = 2.42, 

L = 6.33, N = 25. 

An actual surface corresponding to these values is shown in Fig. 4b. Whether the 
surfaces are still useful under this restriction can only be decided in connection 
with a specific problem. With these values N6/L is only about 4, but the whole 
surface contains about (N6/L)2 w 15 independent regions. 

It should be clear from all this that the essential difficulty of the problem is that 
neighboring points are not independent. This suggests the first possible approach 
to a solution, which is to seek a set of elements that are independent, from which 
the surface can be constructed, and to assign to each a value randomly chosen 
from a suitable distribution. For a homogeneous surface these elements are the 
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Fourier components, and accordingly we describe this as the method of Fourier 
synthesis. The other procedure is to take explicit account of the correlations between 
neighboring points; this can be done by an extension of the theory of optimum 
linear prediction. 

These methods are really suitable only when the distribution of thefk is Gaussian. 
In each case the value off, is given ultimately as a linear combination of random 
numbers, and although the central limit theorem will not strictly apply because 
the coefficients may be of very different sizes, nevertheless we should expect the 
distribution to tend towards the Gaussian form, irrespective of the distributions 
of the random numbers themselves. I have used Gaussian distributions for both 
the fk and the random numbers. 

The method of Fourier synthesis will be described briefly. The two-dimensional 
power spectrum G(ke , k,) is defined by 

G(k, , k,) = 2 ,; jr R(x, y) cos k,x cos k,y dx dy 

where k, and k, are the x and y components of the wave vector k. We set up a 
mesh of points in k-space with spacing Sk, say. Each point on the mesh represents 
a Fourier mode, and to each such mode we assign a random amplitude A(k., k,), 
chosen from a Gaussian distribution with variance G(kz , k,) 6k2, and a random 
phase +(k, , k,) chosen from a distribution uniform in the interval (-&r, &r) 
(the rest of the full interval (- rr, r) is represented by negative values of A). Then 

fdx, Y) = ,c, -4% 3 k,) cos(kzx + k,y + $(k, > k,N (4) 
2’ Y 

is the function we require. 
This procedure was programmed and carried out on the Culham Laboratory 

KDF-9 computer, but it proved to be very slow, with each surface taking of the 
order of 15 minutes computing time. Since any problem we may wish to investigate 
using these surfaces will be statistical, requiring the computation of many surfaces, 
this is depressingly long, and since the other method was found to require only 
two minutes per surface, I did not pursue this method further. 

A partial explanation for the slowness of the Fourier synthesis method is as 
follows. The number of modes must be at least of the same order as the number 
of spatial points, i.e., N2; each mode contributes to each spatial point in Eq. (4), 
giving a computing time proportional to N4. In the other method there are still N2 
spatial mesh points, but for each of these we need take account of correlations 
with only NO2 other points, where N,, - L/6. The total computing time therefore 
is proportional to N02N2, and, other things being equal we would achieve an increase 
in speed of -N2/N,,2 = N2a2/L2 M 15 in our example above. We have taken 
advantage of the independence of different regions of the surface. 
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3. OPTIMUM LINFM PREDICTION 

Suppose for the moment that we are considering a random process, i.e., a random 
function of time belonging to an ensemble (fk(f)) which we shall assume to be 
stationary i.e. with variance independent of the time. Suppose we know the values 
of a particular function f(t) at discrete times in the past, given by 

t= t,= t,,--At, 0 < n, 

and wish to construct the function at times in the future given by 

t=t,=t,+nAt, 0 <n. 

It is adequate to construct the value at t = t, only, after which further values can 
be constructed by iteration. Then f(tJ is a random variable which is to some 
extent correlated with f(t,,), f(t-J, etc. We may consider the subensemble of 
functions {h(t)) with the following properties: every&(t) is a member of {fk(t)), 
and for everyfs(t), 

m-7s) = fL>, 0 < n. 

Thus the subensemble includes all those functions whose values in the past fit the 
known set of values, and by “constructing” the value of f(tl) we mean choosing 
at random a particular fs and evaluating $,(t,). We shall denote subensemble 
averages by ( )B . Evidently the (subensemble) mean and variance of f,(t,) are in 
general functions of f(t,), f(t-J, etc., and this expresses the correlation between 
them. Let us consider the simplest case, when the mean and variance are functions 
only of f(t,), i.e., the “present”, rather than the past. Such a process is by definition 
a Markovprocess, and if we write q = R(At), where R is the correlation function, 
the following results may be established: 

(f&lDs = 9f(t& 

V&l) = 1 - $9 
(5) 

where VB(ti) is the variance of fs(tl), and we assume the ensemble variance to be 
unity. Moreover the correlation function must be of the form 

R(T) = exp (- $$ In 1); 

see, for example, Bendat ([2] pp. 215 and 178). The converse is true: if R(T) has 
this form then f(tJ can be chosen from a Gaussian distribution with parameters 
given by Eq. (5). Thus for this case our problem is solved. 

This form of correlation function is, however, quite restrictive, and indeed 
nonphysical [3]. To remove the restriction we might consider what happens as we 
include a dependence on successively more and more past values of f(t). Happily 
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this is unnecessary, for the problem has been solved in general by Wiener [4]. In 
fact we may identify (fs(tJ)s with Wiener’s optimum linear prediction of f(tl), 
and Vs(tl) with his mean-square error in this prediction. Wiener’s solution is 
given for functions whose whole past is known, but it is simple to adapt it to the 
case of a discrete set of values. We assume that (fs(tl))s can be written as 

where d t = t, - to ; then Wiener shows that 

V,(t,) = 1 - lrn h(d t, T) R(T + dt) dT 
0 

(6) 

(7) 

and that the function h is the solution of the integral equation 

R(V + At) = f= h(dt, T) R(V - T) dT. (8) 
0 

Wiener shows that this method is optimum in the sense that no other linear solution 
with smaller Vs(tl) can be found, i.e. that it represents the most information we 
can possibly have about f(t,) knowing the past of f(t). Further, for a large class of 
functions f(t) no nonlinear method of prediction can be any better. Wiener gives 
a formal solution of Eq. (8) which for our purposes is only useful as a proof of 
existence. However, it does disclose two interesting results, first that in the 
continuous case h(At, T)  is a function of d/d7 as well as 7 in general, i.e., it is an 
operator, and second, that there exist forms for R(T) for which the future of f(t) 

is entirely determined by its known past, i.e., the mean-square error Vs(tl) reduces 
to zero. A sufficient condition for this is that the corresponding power spectrum 
G(w) should decrease as fast as e+ for large w. This is a bit alarming since physically 
occurring power spectra probably do just this, and this would imply that the whole 
function f(t) depends on its values at t + - co, quite at variance with our intuitive 
motion of a random function. However, fortunately, in the discrete case when the 
function is known only at times separated by d t, the condition is much less strong, 
since our knowledge of the past of f(t) is much less complete. For V&) to be 
finite, it is then sufficient that G(w), which is now a periodic function with period 
24At, should have no more than a finite number of separated zeros in one period. 

As a simple example of the solution of Eq. (8), Wiener shows that for R = e-+1 
we have 

h(At, T) = 28(T) e-ardt, 
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where 8(~) is the delta-function. Thus, for example, 

= f(t,) e-dt 
= qftto), 

in agreement with Eq. (5). 
In the discrete case, Eqs. (6)-(8) are replaced by 

where 

and 

h(j) = &It, jot), 

A-3 = Ato - .a), 

fs(l) = j&J + At) = ml), 

where 

V,(l) = 1 - i h(j) R(l + j) 
0 

R(j) = R(jdt) and V*(l) = I/s(h), 

and J is a number so great that R(j) is negligible for allJ > J (such a number must 
always exist). The integral equation becomes 

R(1 + 4 = i h(j) R(n -A, n = 0, l...J, (11) 
0 

a set of simultaneous linear equations which can be solved numerically by the 
usual matrix-inversion methods. I have written a computer program to solve these 
equations and to construct examples of random processes. In Table I, I give the 
values of h(j) obtained for a particular form for R given by 

R(T) = exp[ab - a(b2 + +/“I (12) 

for a = 0 * 2, b = 5 . 0, and J = 24. This form for R(T), which I have used in all 
the remaining part of this work, is a convenient and physically realistic replacement 
for the simple form e-alTl, to which it tends in the limit b + 0. For convenience 
the properties of this function are summarized in Appendix I. It satisfies the 
requirement that the associated power spectrum be positive definite, and is chosen 
as an approximate representation of measured correlation functions in an ex- 
perimental situation which is approximately two-dimensional and isotropic. 
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Now we can follow a particular f(t) through time by calculating (fs(l)& and 
V*(l) [the latter is in fact independent of the particular f(t) and can be computed 
once and for all when h(j) is calculated], choosing f(1) randomly from a Gaussian 
distribution with these parameters, and repeating the process iteratively to give 
successively f(2), f(3), etc. However, we must have some initial values to start 

TABLE I 

THE FUNCTION h(j) 

i h(j) 

0 3.8672 

1 -7.2708 

2 9.2983 

3 -9.4957 

4 8.5006 

5 -7.0519 

6 5.6006 

7 -4.3393 

8 3.3151 

9 -2.5126 

10 1.8955 

11 - 1.4260 

12 1.0707 

13 -0.8024 

14 0.6001 

15 -0.4472 

16 0.3314 

17 -0.2431 

18 0.1752 

19 -0.1224 

20 0.0809 

21 -0.0485 

22 0.0244 

23 -0.0089 

24 0.0017 

such a process; and this is a difficulty because, since the process is supposed to have 
been going on since t = - CO, such initial values are not to be obtained. There are 
two methods of starting such a process, one rigorous, the other practicable. 



296 RUSBRIDGE 

(1) In 1950, Zadeh and Ragazzini [5] extended Wiener’s analysis to the case 
where information about the part of the function f(r) is available only over a limited 
time T. The result is simple enough: in Eqs. (6), (7), (8) the upper limit of integration 
is T instead of co. Analogously, if we know f(t) at N discrete times in the past, 
Eq. (11) becomes 

N-l 

R(1 + n) = 1 h(j, N) wn --A (12) 
0 

assuming N < J (otherwise there is no problem). Notice that h now depends on 
N as well as j. To start the process we choose a random value for f(1) with mean 
zero and variance unity; this is consistent with the absence of any information 
about the past of f(t). Now we can proceed iteratively, so that to obtain f(N + 1) 
we solve Eq. (12) to obtain h(j, N), and use this in Eqs. (9) and (10) where J is to 
be replaced by N - 1. This is continued until N - 1 > J when Eqs. (9)-(11) 
can be used without change. The disadvantage of this is that it requires the solution 
of several sets of simultaneous equations, which is a time consuming process if 
J is large. 
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FIG. 1. An example of a random process, starting from a fixed origin. 
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(2) We can choose a set of J + 1 arbitrary values off, follow the process as 
described above using a single h-function, and discard the first J’ values off, where 
J’ 2 J. The arbitrary set of values can be regarded as a particular sort of statistical 
fluctuation of f(t), and if we follow the process long enough all “memory” of the 
initial state will have worn off. This happens within a time rather larger than the 
integral scale defined above. 

This second method, which only requires the computation of one h-function, 
was the one actually used. As a test of the whole procedure, and to assist in choosing 
a value of J’, I have computed 200 independent functions f(t), following each for 
80 time steps, with the initial values all set to zero. The correlation function used 
was given by Eq. (12) with a = 0 * 2, b = 5 * 0, and J = 24, so that the h-function 
is that shown in Table I. For this case the integral scale is 8 * 3. Figure 1 shows a 
particular f(t), and Fig. 2 the r.m.s. amplitude (averaged over the ensemble of 200 
functions) as a function of time. After 12 time steps this quantity shows no more 
than the expected statistical fluctuations, and the ensemble of functions can be 
regarded as quasi-stationary from then on. This is important for two reasons. 
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FIG. 2. The r.m.s. amplitude of 200 examples of random processes similar to that shown 
in Fig. 1. After 12 time steps, the value is constant and closely equal to the expected value shown, 
with fluctuations no larger than would be expected on the basis of the expected standard error 
limits. 
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First, it suggests that a reasonable value for J’ is 12, or ~1 * 5 times the integral 
scale, and second, it shows that the process is statistically stable. Some thought 
about the method suggests that numerical errors in the computation might act to 
increase the variance continuously by a random-walk process. Evidently this does 
not occur, or at least the effect is negligible over 80 time steps. 

4. TWO-DIMENSIONAL PREDICTION AND RANDOM SURFACES 

Consider a mesh of points (xi, yJ with xi = 2, yi = jS, and suppose we 
know the value of a random function f(x, y) at the mesh points i < 0, all j, 
and i = 1, j < j’. By an obvious notation we write 

As before, we introduce the subensemble {fs(i, j)} defined by &(i, j) = f(i, j) at 
all the mesh points at which f(i, j) is known. We wish to find means of calculating 
(fs(1, j’))s . Figure 3 makes the situation clear. As before we write (fs(1, j’))* as a 
linear combination of all previously known values; dropping the dash on j we have 

(f&l, A>, = f f h,(i’, j’)f‘(-i’, .i - j’> 
i’s0 j’z-cc 

+ 5 W’)fU,j -.i’). j’=l (13) 

We now wish to express the condition that (fs(l, j)), be the best possible 
approximation to f(1, j) in a least-square sense; i.e., the ensemble mean square 
error V&l, j) should be a minimum, where 

VS(L j) = <(fU, j) - <fs(L j)>d2>. (14) 

Before performing this minimization, however, it is convenient to rearrange Eq. 
(13). As it stands, there is no reason to believe h2(i’, j’) to be symmetrical in j’. 
We shall aim to replace it by a function which has this symmetry. Consider the 
subensemble {ft(i, j)} consisting of all those functions which are equal to f(i, j) for 
i < 0. If we had not yet constructed any values of f(i, j) for i = 1 it would be 
this subensemble which we should use to obtain the first value. Accordingly, we 
should write 

<ftU,j)>t = i i W,j).f(-i’,j -.i’>. (15) 
i’=O j’=-m 

Now we can write 

Al, j) = (ft(L Ah + af(j> (16) 
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and Sf(j) is now to be considered independent of all f(i’, j’) for i’ < 0. Substituting 
Eqs. (16) and (15) in (13) we can rewrite the result as 

<f&ih = f 5 4’J’) f(-i’, j -.i’) 
i’dJ j’=-m 

+ f Mj’) 8fC.i - j’). (17) 
i’=l 

In deriving this, note that all points f(i, j) for i < 0 are included in the double 
summations in both Eqs. (13) and (15) and any linear combination of sums over 
these points can always be put in the form of the first term of Eq. (17). Now we 
substitute Eq. (17) in Eq. (14) and expand. We assume ((f(1, j))z) = 1, and 
obtain 

vdl,j) = 1 - 2<f(LMf&SJ + <((fs(l,.i)>J2> 

= I - 2 i f h(i’,I’)(f(i, j) f(-i’,j -j’)) 
i’s0 j’c-m 

+ f i f f h(i’,j’)h(i”, j”)(f(-i’,,j -j’) f(-i”,,j -j”)) 
i’=O jr=-* i-=0 j”=-* 

- 2 f h(j’)@f(j) SfCj - j’)> 
j’=l 

+ ? f W') W"Ksf(j -j') af(j -j"D. j'=l j"=l (18) 

Here we have used the independence of Sf( j) and f(i, j) for i < 0 to eliminate the 
cross-terms arising in the expansion of (( fs(l, j))s)2, and to write 

(f(L j>af(j - j’)> = @f(j>af(j - j’b 

Inspection of Eq. (18) shows that we now have two completely independent sets 
of terms, each of which must be minimized separately, to obtain equations for 
h(i’, j’) and h,(j’). Now let us return to the subensemble {ft(i, j)} and consider 
the case where we have no information about f(i, j) for i = 1. We now form the 
ensemble mean-square error as before, obtaining from Eq. (15) 

Vt(l,.j) = 1 - 2 f f &i’,J’)<f(l,j) f(--i’,j -j’)> 
i’=tJ y--a, 

+ i f  5 i R(i’, j’)k(i’, j”)( f(-i’, j - j’) f(-i”, j -j#)>. 
i’&J j*=-m i”=fJ j”=-a, 

(19) 



300 RUSBRIDGE 

Comparison of Eqs. (18) and (19) shows that when Vt and V, are minimized we 
must have 

r;<i, j) = h(i, j). 

It follows that we may construct f( 1, j) by the following prescription: first construct 
(ft(1, j))t , then add to it a random function Sf<j), which is to be generated by 
an /z-function determined by minimizing the last two terms in Eq. (18). The actual 
procedure for minimizing this equation is very closely parallel to that given by 
Bendat ([2], p. 181), and need not be reproduced here. The result is that h(i’, j’) 
is the solution of the set of equations 

R(1 + i, j) = i i h(i’, j’) R(i - i’, j - j’) 
i’=O j’=-J 

(20) 

for i = 0, l...J, j = -J...J, where 

R(i, j) = R[S(i2 + j2y21. 

Substitution in Eq. (19) yields the following expression for the mean-square 
error, Vt , 

Vt(l) = 1 - i i I@‘, j’) R(l + i’, j’). 
i’=ll j’=-J 

These equations can be simplified somewhat by noting that since R(i, j) is symme- 
trical in j, from Eq. (20) h(i’, j’) must be symmetrical in j’. This allows an appre- 
ciable reduction in the computing time and storage space required to solve Eq. (20). 

The correlation function R,(j) of the random function Sj(j) is determined by 
the requirement that f(1, j) given by Eq. (16) should have the correct correlation 
as a function of j. Once again, using the independence of f(i, j) for i < 0 and 
Sf(j), we have 

or 
Rh j) = vt(l) &Cd + (1 - vt(l)> R,(j), 

where R,(j) is the correlation function of (ft(1, j))t given by 

(22) 

(1 - Vt(l)) R,(j) = i i h(i’, j”) R(l + i’, j - j’). (23) 
a”SrJ j’=-J 

We can now determine S!(j) by the method of $3 as a random function having a 
variance given by Vt(1) and a correlation function R, . Then Eq. (16) represents 
the solution to our problem, and we need only the starting procedure for a finite 
sample to complete it. Here again two starting procedures are possible, and it is 
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easily seen that what I have called in Section 3 the rigorous procedure requires here 
the calculation of WP h-functions, which is quite out of the question. I have 
adopted the second alternative and set arbitrary values (actually zeros) of f(i, j) 
in a band of width J + 1 around three sides of the mesh, with a band immediately 
inside it, again of width J + 1, within which the computed values offare discarded. 
Figure (3) shows the situation more clearly. 

I have assumed that the result obtained in Section 3-that it is adequate to 
discard enough points to cover a distance 1 * 5L, applies here also-and in all the 
surfaces I have computed J + 1 > 1 * 5L/6. It was not possible to make a rigorous 
statistical check of the whole procedure, as in the one-dimensional case, because 
it would have required to much computer time, but the surfaces I have computed 
at least show no obvious evidence of inhomogeneity near the edges. 

The value of J is restricted by the method of solution. Equation (20) represents 
(J + 1)(2J + 1) simultaneous equations. However, the symmetry of h(i, j) in j 
reduces the number to (J + 1)2. The method of solution then required at least 
(J + 1)4 words of storage space in the computer, which means that J cannot be 

A 1 B 
C 

lYYIII -i, 

-I 
ZO 

I 

FIG. 3. The layout of the computation of a random surface. A is the region containing 
arbitrary values off(i, j) at the mesh points. B is the region in which the computed values are 
discarded. The regions B, C, and D together contain all the points that have been computed, 
and are used in forming the sub-ensemble (fa(i, j)}. Only regions B and C are used in forming 
the sub-ensemble {ft(i, j)}. X is the next point to be computed. The computation proceeds in the 
direction of the arrow. 
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much more than 10. This again limits L/6 to -5. Table II shows the matrix h(i, j) 
for a correlation function given by Eq. (12) with a = 0.1840, b = 1 h 0, and J = 9. 
Evidently the components of h are very small for i, j - J which gives us some reason 
to believe that the approximation introduced by the small value of Jis not a bad one. 

Figure (4) shows contour diagrams of two surfaces constructed by this method. 
To simplify the diagrams and bring out their main features more clearly only the 
positive- and zero-height contours are shown. The two surfaces have the same 
value of the integral scale L = 6.33 and variance unity, but differ in the other scale. 
Comparison shows the influence of the smaller scale on the roughness of the 
surface. 

A pair of surfaces similar to these shown in Fig. (4) was computed for different 
values of a and b but using the same set of random numbers. Rather unexpectedly, 
it was found that the surfaces had the same general appearance. This suggested 
the conjecture that the smoother surface can in fact be derived from the rougher 

TABLE II 

THE MATRIX h&j) 

i/j 0 1 2 3 4 5 6 I 8 9 

0 .863 

1 -.416 

2 s54 

3 --.057 

4 .021 

5 - .008 

6 .002 

7 -.OOl 

8 .ooo 

9 --.OOO 

.304 .073 .042 .018 .012 .006 

-.215 -.074 -.038 -.020 -.011 -.007 

.090 .032 .015 .008 .004 .002 

-.036 --.014 -036 -.003 -.002 --.OOl 

.014 .005 .002 a01 BOO .ooo 

-.005 -.002 -.OOl -.ooo -.ooo - .ooo 

.002 .ool .ooo Boo .ooo .ooo 

- .ooo -.ooo -.OOO --.ooo -.ooo -.ooo 

.ooo mo .ooo .ooo .ooo .OOO 

-.ooo -.OOO -.ooo -.ooo -.ooo -.ooo 

.002 .004 

-.003 -.003 

.OOl .ooo 

-BOO -.OOO 

.ooo .ooo 

-.ooo -.ooo 

.ooo --.ooo 

.ooo -.OOO 

.ooo -.ooo 

.ooo -.ooo 

by a filtering process whereby small wavelength modes are attenuated. This is far 
from obvious apriori, and I have not been able to prove or disprove it. It is however 
of some importance, since the one advantage that might be claimed for the Fourier 
synthesis method was that it would allow one to carry out just such a filtering 
operation on individual surfaces and examine the effects directly. 

The random numbers used in these calculations were derived from a pseudo- 
random number generating routine in the computer. This yields numbers with a 
uniform distribution in the range (- 1, I), but by adding five of them together a 
set of numbers could be obtained with a good approximation to a Gaussian 
distribution. 
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The construction of a surface on a mesh of side 25 by this method takes just 
over two minutes on the Culham Laboratory KDF-9 computer, if the h-functions 
are already known; to compute these also takes about 2 minutes. Of course this 
need be done only once for each ensemble of surfaces. 

There is one final point which may bother some readers. We have treated a 
random function in space essentially as a process in time for computing purposes. 
In a temporal process it is, of course, obvious that the value of a function f(t) 
can depend only on previous values of the function f(t - T), T > 0. But surely, 
when we consider points along a line in space, say, the function f(x) may depend 
on values both to right and to left of x, f(x + 5) for all <? The answer is that we 
have chosen to construct f(x) in such a way that the points at which we know the 
values of the function are all to the left (say) of x, so that as far as our knowledge 
goes f(x) resembles a time function. We could choose different methods in which 
points both to the right and to the left of x were known; but I believe all such 
methods involve the determination of many h-functions, and that the method I 
have used, involving only one h-function, is the simplest. 

0 b 

FIG. 4. Examples of random surfaces with correlation function given by Eq. (12), with the 
same integral scale L = 6 . 33. The regions shown are squares of side 25. Only positive and 
zero-height contours are shown so as to bring out the structure more clearly. (a) X = 5.19; 
(b) X = 2.42. 

5. CONCLUDING REMARKS 

I have shown how specimens of random surfaces may be generated in a computer. 
While I was engaged on this work I received several ingenious suggestions for 
methods of producing surfaces by analogue means (e.g., throwing handfuls of 
wet sand onto a board) but while such methods may be very useful for particular 
problems they do not fulfill the basic condition of this work, namely that the surface 
produced must be a member of an ensemble with a specified correlation function. 
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APPENDIX I. THE CORRELATION FUNCTION 

We have 

The integral scale can be found from the transform, which is given by Erdelyi 
et al [6]: if 

then 

G(w) = ,; R(T) cos wi- d7, 

G(0) = j-a R(T) d7 = L. 
0 

Thus the integral scale 

L = beabK,(ab). 

In the limit b -+ 0 for finite a, K,(ab) + l/ab and L + l/a, as expected since 
R + e-al71 

The gradient scale h is given by 

R(T)=~-T~/~~+.** or 

This gives 

X2 = 2bla. 

It can be shown that l/b plays the part of a Kolmogorov microscale; the largest 
value of w, for example, for which G(o) is appreciable is ml/b. This explains the 
association with surface “roughness” in Section 4, for example. 

In Table III we give a series of values of a, , b, , and X for constant L = 6 - 33. 

TABLE III 

6 a l/a x 

3.84 0.2610 3.84 5.44 
3.0 0.2222 4.5 5.19 
2.0 0.2075 4.82 4.39 
1.0 0.1840 5.44 3.30 
0.5 0.1703 5.86 2.42 
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